Target molecule selection

Solutions Database

Preventing oxidation of omega-3 fatty acids before and after addition to alternative seafood products

Deeper fundamental knowledge of the causes and prevention of oxidation of omega-3 fatty acids before, during, and after addition to alternative seafood products is needed to improve their nutritional and organoleptic properties. While several approaches to prevent oxidation of unsaturated lipids in conventional seafood products have been developed, antioxidation methods must be tailored to the formulations and processing of alternative seafood products, or perhaps new methods must be developed altogether.

Solutions Database

Systematic investigation of growth factor needs and effects

Open-access research into growth factors required for proliferation, maintenance, and differentiation of cell types relevant to cultivated meat will support both academic and industry research efforts. This research could include screening of species-specific growth factors under a variety of conditions and in a variety of cell types to characterize cross-species compatibility, which informs commercial efforts to scale production of the most widely used growth factors. Research should also seek to define optimal concentrations of individual growth factors and cocktails for achieving various cell states or behaviors, as well as understanding interactions between growth factors.

Solutions Database

Producing animal-like fats through microbial fermentation

Microbial fermentation provides an efficient method for generating lipid molecules that are chemically identical to those produced by animals. Research efforts are needed to expand current knowledge about the process of engineering the appropriate metabolic pathways for the synthesis of animal lipids into microbial organisms well-suited for large-scale fermentation.

Solutions Database

Biosynthetic pathway discovery for fermentation-produced molecules

After identifying specific target molecules or desired functionalities in animal-derived foods, scientists can work backward, mining microbial sequences for candidate molecules in the microbial realm that might provide similar functionality. This process can also elucidate the pathways that produce these molecules and inform strategies for designing microbial strains that produce these molecules at scale.

Solutions Database

Fat production & encapsulation within oleaginous yeast

Oleaginous yeast can convert sugars into fats that impart flavor and mouthfeel to alternative proteins, and they can accumulate lipids within their cell bodies to inhibit oxidation. New research on lipid encapsulation in yeast should investigate the efficacy of yeast species for the accumulation and storage of lipids—including lipids with the same profile as animal lipids.