Species-specific research toolkits for cultivated meat-relevant species
Coordinated efforts to develop standardized, comprehensive research toolkits of meat-relevant species would exponentially accelerate cultivated meat research.
Coordinated efforts to develop standardized, comprehensive research toolkits of meat-relevant species would exponentially accelerate cultivated meat research.
Open-access research into growth factors required for proliferation, maintenance, and differentiation of cell types relevant to cultivated meat will support both academic and industry research efforts. This research could include screening of species-specific growth factors under a variety of conditions and in a variety of cell types to characterize cross-species compatibility, which informs commercial efforts to scale production of the most widely used growth factors. Research should also seek to define optimal concentrations of individual growth factors and cocktails for achieving various cell states or behaviors, as well as understanding interactions between growth factors.
Metabolic and physiological characteristics of microbial strains define the commercial potential of any fermentative process, but only a minimal number of strains have been scaled up for commercial production of alternative protein. To broaden the spectrum of available microorganisms, systematic investigation into the physiology of novel microbial strains is needed to identify strains suitable for fermentation.
A more comprehensive understanding of the processes, structures, and molecular constituents governing meat's organoleptic properties will inform the production of alternative proteins.
For tissue-structured cultivated meat production, the transition from the proliferation phase to differentiation phase may involve seeding cells onto a prefabricated scaffold within a perfusion bioreactor. Medium is then perfused through the cell-laden scaffold, providing nutrients and oxygen as cells differentiate and mature. Computational models are needed to describe fluid flow through scaffolds to better understand mass transfer and shear forces. These models will inform considerations for scaffold materials, geometries, dimensions, fabrication methods, and bioprocess design as well as considerations for the composition and viscosity of the medium.
Rather than relying on recombinant growth factors, cultivated meat companies could use conditioned media from animal cells producing high levels of these molecules.
More frameworks for academic-industry collaboration could help build talent pipelines, create research commercialization pathways, and drive alignment on research priorities.
Microbial fermentation provides an efficient method for generating lipid molecules that are chemically identical to those produced by animals. Research efforts are needed to expand current knowledge about the process of engineering the appropriate metabolic pathways for the synthesis of animal lipids into microbial organisms well-suited for large-scale fermentation.
In strain development, many of the selectable markers confer traits like antibiotic or herbicide resistance. While some auxotrophic selection markers exist, these are often not orthogonal and thus not amenable to stacking for multi-trait selection.
An alternative protein data lake could contain anonymized data from processing runs across many manufacturers, informing processing improvements and aiding process failure troubleshooting.